MAX materials and MXene materials are new two-dimensional materials who have attracted much attention recently, with excellent physical, chemical, and mechanical properties, and possess shown broad application prospects in many fields. The following is a comprehensive introduction to the properties, applications, and development trends of MAX and MXene materials.
What exactly is MAX material?
MAX phase material is actually a layered carbon nitride inorganic non-metallic material comprising M, A, X elements in the periodic table, collectively referred to as “MAX phase”. M represents transition metal elements, including titanium, zirconium, hafnium, etc., A represents the main group elements, such as aluminum, silicon, germanium, etc., X represents carbon or nitrogen. MAX-phase materials, each atomic layer is composed of M, A, X, the three elements of the alternating composition arrangement, with hexagonal lattice structure. Because of the electrical conductivity of metal and strength, high-temperature resistance and corrosion resistance of structural ceramics, they may be popular in high-temperature structural materials, high-temperature antioxidant coatings, high-temperature lubricants, electromagnetic shielding along with other fields.
Properties of MAX material
MAX material is really a new type of layered carbon nitride inorganic non-metallic material using the conductive and thermal conductive qualities of metal, composed of three elements using the molecular formula of Mn 1AXn (n=1, 2 or 3), where M refers back to the transition metal, A refers to the main-group elements, and X means the aspects of C and N. The MXene material is really a graphene-like structure obtained from the MAX phase treatment with two-dimensional transition metal carbides, nitrides, or carbon-nitrides. MAX phases are novel two-dimensional nanomaterials made up of carbon, nitrogen, oxygen, and halogens.
Uses of MAX materials
(1) Structural materials: the superb physical properties of MAX materials get them to have an array of applications in structural materials. As an example, Ti3SiC2 is a common MAX material with good high-temperature performance and oxidation resistance, which can be used to manufacture high-temperature furnaces and aero-engine components.
(2) Functional materials: Besides structural materials, MAX materials are also found in functional materials. As an example, some MAX materials have good electromagnetic shielding properties and conductivity and could be used to manufacture electromagnetic shielding covers, coatings, etc. Furthermore, some MAX materials also provide better photocatalytic properties, and electrochemical properties can be utilized in photocatalytic and electrochemical reactions.
(3) Energy materials: some MAX materials have better ionic conductivity and electrochemical properties, which may be utilized in energy materials. As an example, K4(MP4)(P4) is one of the MAX materials rich in ionic conductivity and electrochemical activity, which bring a raw material to manufacture solid-state electrolyte materials and electrochemical energy storage devices.
Exactly What are MXene materials?
MXene materials certainly are a new kind of two-dimensional nanomaterials obtained by MAX phase treatment, just like the structure of graphene. The surface of MXene materials can connect with more functional atoms and molecules, along with a high specific surface area, good chemical stability, biocompatibility, and tunable physical properties, etc, characterize them. The preparation ways of MXene materials usually range from the etching management of the MAX phase and also the self-templating method, etc. By adjusting the chemical composition and structure of MXene materials, the tuning of physical properties including electrical conductivity, magnetism and optics can be realized.
Properties of MXene materials
MXene materials are a new kind of two-dimensional transition metal carbide or nitride materials comprising metal and carbon or nitrogen elements. These materials have excellent physical properties, like high electrical conductivity, high elasticity, good oxidation, and corrosion resistance, etc., in addition to good chemical stability and the ability to maintain high strength and stability at high temperatures.
Applications of MXene materials
(1) Energy storage and conversion: MXene materials have excellent electrochemical properties and ionic conductivity and they are widely used in energy storage and conversion. For example, MXene materials can be used electrode materials in supercapacitors and lithium-ion batteries, improving electrode energy density and charge/discharge speed. Furthermore, MXene materials can also be used as catalysts in fuel cells to improve the action and stability in the catalyst.
(2) Electromagnetic protection: MXene materials have good electromagnetic shielding performance, and conductivity can be utilized in electromagnetic protection. For example, MXene materials bring electromagnetic shielding coatings, electromagnetic shielding cloth, as well as other applications in electronic products and personal protection, boosting the effectiveness and stability of electromagnetic protection.
(3) Sensing and detection: MXene materials have good sensitivity and responsiveness and can be utilized in sensing and detection. For instance, MXene materials bring gas sensors in environmental monitoring, which may realize high sensitivity and high selectivity detection of gases. Additionally, MXene materials may also be used as biosensors in medical diagnostics as well as other fields.
Development trend of MAX and MXene Materials
As new 2D materials, MAX and MXene materials have excellent performance and application prospects. In the future, with all the continuous progress of science and technology as well as the increasing demand for applications, the preparation technology, performance optimization, and application regions of MAX and MXene materials is going to be further expanded and improved. The following aspects can become the focus of future research and development direction:
Preparation technology: MAX and MXene materials are mainly prepared by chemical vapor deposition, physical vapor deposition and liquid phase synthesis. Later on, new preparation technologies and techniques may be further explored to understand a much more efficient, energy-saving and eco friendly preparation process.
Optimization of performance: The performance of MAX and MXene materials has already been high, however, there is still room for further optimization. In the future, the composition, structure, surface treatment along with other elements of the fabric may be studied and improved thorough to boost the material’s performance and stability.
Application areas: MAX materials and MXene materials have already been commonly used in numerous fields, but there are still many potential application areas to be explored. Later on, they may be further expanded, like in artificial intelligence, biomedicine, environmental protection as well as other fields.
In summary, MAX materials and MXene materials, as new two-dimensional materials with excellent physical, chemical and mechanical properties, show a wide application prospect in lots of fields. With all the continuous progress of technology and science and the continuous improvement of application demand, the preparation technology, performance optimization and application parts of MAX and MXene materials will be further expanded and improved.
MAX and MXene Materials Supplier
TRUNNANO Luoyang Trunnano Tech Co., Ltd supply high purity and super fine MAX phase powders, such as Ti3AlC2, Ti2AlC, Ti3SiC2, V2AlC, Ti2SnC, Mo3AlC2, Nb2AlC, V4AlC3, Mo2Ga2C, Cr2AlC, Ta2AlC, Ta4AlC3, Ti3AlCN, Ti2AlN, Ti4AlN3, Nb4AlC3, etc. Send us an email or click on the needed products to send an inquiry.